化工资讯
当前位置:元素商城  >  化工资讯网  >   化工热点资讯   >  皂化反应方程式及反应现象是什么
皂化反应方程式及反应现象是什么
2017-08-28 09:13:08来源:元素商城

化学词典告诉你皂化反应方程式及反应现象。近年来,手工皂因造型多样,保湿效果出色而受到人们青睐,在商场和各大购物网站都有着不错的销量。手工皂可以通过自己diy就可以制成,其中涉及到一个化学反应,那就是皂化反应。下面我们就来简单聊聊皂化反应是如何反应的?

 皂化反应方程式及反应现象是什么.jpeg

皂化反应方程式

脂肪和植物油的主要成分是甘油三酯,它们在碱性条件下水解的方程式为:

C17H33-:8-十七碳烯基。R-COOH为油酸。

C15H31-:正十五烷基。R-COOH为软脂酸。

C17H35-:正十七烷基。R-COOH为硬脂酸。

油酸是单不饱和脂肪酸,由油水解得;软、硬脂酸都是饱和脂肪酸,由脂肪水解得。

如果使用KOH水解,得到的肥皂是软的。

向溶液中加入氯化钠可以分离出脂肪酸钠,这一过程叫盐析。高级脂肪酸钠是肥皂的主要成分,经填充剂处理可得块状肥皂。

现象:在皂化锅中,充分搅拌并加热,油脂层逐渐减少,最后液体不出现分层,即说明皂化反应完成。

加入NaCl细颗粒,在液体上方出现固体,即析出的高级脂肪酸钠。

可用纱布过滤,干燥,添加一些添加剂,成型,即得到肥皂。

皂化反应和酯化反应不是互为可逆反应。

皂化反应现象

皂化反应过程中常出现热析液化现象、全果冻现象、出油出水或松糕、吸潮现象,是代表着皂化过程中条件不足,以致影响反应的平衡,这些所谓的条件不足大多是因入模太早或保温不足所引起。

热析液化现象:入模前看来是T了,但有极大比例的慢速分子还未与碱反应,静置后彼此接触机会少,又加上极小比例的反应放温不足以制造分子的热运动,于是出现反应几乎停止的状态。另外,有添加促进皂化反应激烈的添加物时若太早入模,容易因放热太剧烈而造成运动过度分子间更不容易结合。这情形是入模的早了。若液化现象严重可再次搅拌重新入模或热制处理(有乳类添加以不超过40度为原则)。

全果冻现象:真正皂化顺利的果冻需极高的温度且长时间(配方不同所需时间也不同,但至少两三天以上)持续放热,放热中要注意温度不可散失,因高温产生结晶变化,在温度尚存时外观看似透明且皂体呈现较Q软状,温度降下后,皂中的水分子会随着热能的散失而蒸发部分,于是又回归原先的固化及色泽,这样的皂是反应的较彻底的,出模时的PH值也相对较低。但一般看到所谓的全果冻,很多是因入模太早,化学键结合还不够稳固,高温状态下键结再次断裂,加上高温导致分子运动过大,慢速的分子无法顺利结合,如不保温或保温不当,导致热能快速散失,水分蒸发不多,皂中含水量多,成皂分子数量却足以呈现轻度固化,脱模不易,皂化程度比热析液化好一些,所以出模后要经过更长的时间才能逐渐达到皂化平衡,水分蒸发也较不容易。这样的皂若是不饱和脂肪酸比例高就容易氧化酸败。两个果冻现像状态一样,结果却大不同。可热制过以加强化学键的结合(有乳类添加以不超过40度为原则)。

出油出水:部分游离碱或游离脂肪酸未作出结合,大多是入模太早或保温不够仔细。通常出模时的PH值较高,这样的皂氧化速度也较快。可热制补救(有乳类添加以不超过40度为原则)。

松糕:皂分子结合稳固,但皂分子与皂分子间结构松散,入模不会太早,但保温工作不足而造成松散现象,配方中有速T的油也较容易发生松糕情形。热蒸处理即可。

不同临界点的皂化程度,出现的状态就不同,问题也多,相对的酸败机率就提高,除了上述常见的状况外,晾皂后容易吸潮的皂体也表示皂化程度不够理想,不过,是比上述情形好多了。

您可能感兴趣的中国化工网栏目: 化学试剂化学元素化学元素周期表CAS查询
元素商城微信公众号
「一个有逼格的公众号」
相关标签: 原料化工中间体  
相关专题: 化学试剂
相关阅读:
●  电阻炉分为哪几类,工作原理是什么
化学词典告诉你电阻炉的分类及工作原理,电阻炉是利用电流使炉内电热元件或加热介质发热,从而对工件或物料加热的工业炉。电阻炉在机械工业中用于金属锻压前加热、金属热处理加热、钎焊、粉末冶金烧结、玻璃陶瓷焙烧和退火、低熔点金属熔化、砂型和油漆膜层的干燥等。 电阻炉分类电阻炉的分类:周期式作业炉和连续式作业炉。1.周期性电阻炉一般用于实验和小规模热处理。2.连续式作业电炉用于工业生产周期式作业炉分......
●  聚季铵盐-7的合成方法以及用途
元素百科为您介绍聚季铵盐-7的合成方法以及用途。阳离子季铵协型高分子表面活性剂,外观为无色至淡黄色粘稠液体。易溶于水、溶于95%的乙醇,安全、无毒、水解稳定性好,对PH值变化适应性强。 聚季铵盐-7合成方法将计量的氯化二甲基二烯丙基铵加入聚合釜中,加水溶解,搅拌均匀后,加入适量的丙烯酰胺,升温至6 0~7 0℃,加入催化剂量的过硫酸铵,继续搅拌2~3 h。最后用3 0%的 N a OH ......
●  《科学》发表上海大学量子物质研究突破性成果
元素百科为您介绍发表上海大学量子物质研究突破性成果。上海大学曹世勋教授团队与美国Rice大学Kono教授团队等同行在凝聚态磁性系统中发现了第一个迪克协同作用的实例,而此前迪克协同效应只在量子光学和冷原子等领域中存在。这一发现将有助于增进对磁现象的理解。8月24日,这项重大突破性成果发表于《科学》杂志。 据介绍,该成果以曹世勋团队成功生长并表征不同浓度稀土Y3+掺杂铁酸铒(ErFeO3)高......

您确定要从购物车中移除吗???