化工资讯
当前位置:元素商城  >  化工资讯网  >   化工热点资讯   >  石墨烯:助太阳能电池“遍地开花”
石墨烯:助太阳能电池“遍地开花”
2017-08-15 09:05:49来源:元素商城

元素百科为您介绍石墨烯助太阳能电池“遍地开花”。想象这样一些场景:未来,无论是窗户和墙壁,还是手机和笔记本电脑,太阳能电池无处不在。麻省理工学院(MIT)电子工程和计算机科学系教授孔静(音译),近日利用石墨烯研发的可弯曲透明太阳能电池,就让这一梦想中的场景离现实更近了一步。这种太阳能电池无需单独安装,可集成到手机和电脑屏幕内,有望大幅降低这些电子产品的制造成本。

 石墨烯:助太阳能电池“遍地开花”.jpeg

石墨烯“临危受命”

近10年来,研究人员一直在研发各种透明的有机太阳能电池,并取得重大进展。这些电池与硅基太阳能电池相比,具有多项优势:制造工艺简单,成本便宜,轻便易弯曲,容易运送到没有电网的偏远地区。但这些研究面临着一个长期难以解决的难题:找不到集导电性和光学透明性于一身的合适电极材料。

目前,最广泛使用的材料是铟锡氧化物(ITO),这种材料导电性和透明性都符合要求,但太硬,弯曲时容易折断碎裂,而且,铟是一种稀有金属,用来生产太阳能电池成本过高。

石墨烯层成为替代ITO的最佳选择。这种用随处可见的碳制成的材料,不仅导电性高、可弯曲和透明,而且做成的电极只有1个纳米厚,更符合超薄有机太阳能电池的需求。

石墨烯新工艺克服瓶颈

但两大瓶颈始终制约着石墨烯电极在太阳能电池的普及。第一个瓶颈是石墨烯两个电极难以沉积到太阳能电池上。大多数太阳能电池板都是玻璃或塑料,当把其中一个石墨烯电极(底层电极)直接沉积时,需要水溶液和加热,导致另一个顶层电极沉积工艺特别复杂。孔静表示:“两层石墨烯电极之间的空穴运输层(HTL)易溶解,因此对水和热特别敏感,如此一来,其他研究团队往往将顶层电极用ITO代替,只在底层使用石墨烯电极。”

石墨烯电极的另一瓶颈是,顶层电极和底层电极必须承担不同的工作性能,实现这一点非常不容易。

孔静教授带领其实验室团队研发出的特定工艺,却能一次性解决这两大瓶颈。他们使用铜箔、聚合物层、硅胶和一层乙烯—醋酸乙烯酯(EVA),不仅成功将两层石墨烯电极沉积到太阳能板上,而且能改变顶层石墨烯电极的工作性能,使其与底层石墨烯的性能完全不同,确保了电流顺畅。

石墨烯电池透明度迄今最高

为了检测石墨烯电极是否实用,孔静团队利用学校另一个实验室的太阳能电池板,将石墨烯电极、ITO电极和铝电极分别集成到玻璃板上,比较了三种电极的太阳能转换效率。测试结果发现,石墨烯电极和ITO电极的转换效率相当;铝电极的转换效率最高。孔静解释道,这是因为铝电极能将部分太阳光反射回电池板,可吸收更多的太阳能,因此效率最高。

他们对用两层石墨烯电极制成的太阳能电池进行透明度检测发现,其光学透明度达到61%,最高值有69%,在目前透明太阳能电池中最高。

孔静表示,他们的石墨烯太阳能电池能铺展到任何表面,不管这个表面的软硬和透明程度如何。他们还用透明塑料、不透明纸和半透明胶带分别做底板,将双层石墨烯电极沉积其上制成太阳能电池,发现三者转换效率相当,略低于玻璃为底板的太阳能电池转换效率。这意味着,石墨烯太阳能电池未来用途非常广泛,无论是墙壁和玻璃,还是手机和电脑,石墨烯电池都可以铺展在上面,提供所需电能。

虽然目前石墨烯电池的转换效率只有4%,但根据孔静团队的理论计算,在不降低透明度的情况下,石墨烯太阳能电池的转换效率可提高到10%,提升空间很大,这也是他们下一步的研究重点。

您可能感兴趣的中国化工网栏目: 化学试剂化学元素化学元素周期表CAS查询
元素商城微信公众号
「一个有逼格的公众号」
相关标签: 高分子功能材料新工艺  
相关专题: 石墨烯
相关阅读:
●  气相色谱常见故障排查方案(一)
元素百科资讯频道:本文主要介绍气相色谱检测中常见故障排查。 进样后不出峰   1、无载气   2、进样器漏或堵   3、色谱柱链接处严重漏气   4、火焰熄灭   5、没有极化电压   6、信号线断路   7、汽化室或柱室温度太低   8、仪器信号......
●  《先进材料》:石墨烯纤维规模化制备及高性能化再次取得突破
元素百科为您介绍石墨烯纤维规模化制备及高性能化再次取得突破。浙江大学教授高超研究团队近日在石墨烯纤维的规模化制备及高性能化等方面再次取得新突破,两篇论文先后发表于《先进材料》。 石墨烯纤维目前最高性能水平高超团队针对如何提升石墨烯纤维的力学性能和导电性能两大关键问题开展了系统研究。首次提出了“全尺度协同缺陷工程”策略,实现了高性能石墨烯纤维的规模化制备,所得石墨烯纤维直径最细可达1.6 ......
●  中科院:低温等离子体改性材料应用研究获进展
元素百科为您介绍低温等离子体改性材料应用研究获进展。近日,中国科学院合肥物质科学研究院等离子体物理研究所李家星课题组基于对等离子体改性材料的研究,应用低温等离子体方法成功设计合成了氨基功能化的鳞片石墨材料,实现对U(VI)的高效富集。相关研究成果发表在美国化学会环境类核心期刊ACS Sustainable Chem. Eng., Article ASAP上。低温等离子体方法在改性材料方面具有许多优......

您确定要从购物车中移除吗???