化学词典告诉你基因芯片技术分为哪几步以及它的应用,DNA芯片技术,实际上就是一种大规模集成的固相杂交,是指在固相支持物上原位合成(insitusynthesis)寡核苷酸或者直接将大量预先制备的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交。
基因芯片技术步骤
DNA芯片技术主要包括四个主要步骤:芯片制备、样品制备、杂交反应和信号检测和结果分析。
1、芯片制备-制备芯片主要以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。芯片的制备除了用到微加工工艺外,还需要使用机器人技术。以便能快速、准确地将探针放置到芯片上的指定位置。
2、样品制备-生物样品往往是复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,有时样品的量很小。所以,必须将样品进行提取、扩增,获取其中的蛋白质或DNA、RNA,然后用荧光标记,以提高检测的灵敏度和使用者的安全性。
3、杂交反应-杂交反应是荧光标记的样品与芯片上的探针进行的反应产生一系列信息的过程。选择合适的反应条件能使生物分子间反应处于最佳状况中,减少生物分子之间的错配率。
4、信号检测和结果分析-杂交反应后的芯片上各个反应点的荧光位置、荧光强弱经过芯片扫描仪和相关软件可以分析图像,将荧光转换成数据,即可以获得有关生物信息。基因芯片技术发展的最终目标是将从样品制备、杂交反应到信号检测的整个分析过程集成化以获得微型全分析系统(micrototalanalyticalsystem)或称缩微芯片实验室(laboratoryonachip)。使用缩微芯片实验室,就可以在一个封闭的系统内以很短的时间完成从原始样品到获取所需分析结果的全套操作。
基因芯片技术的应用
基因芯片技术应用领域主要有基因表达谱分析、新基因发现、基因突变及多态性分析、基因组文库作图、疾病诊断和预测、药物筛选、基因测序等。另外基因芯片在农业、食品监督、环境保护、司法鉴定等方面都将作出重大贡献。基因芯片的飞速发展引起世界各国的广泛关注和重视。 鉴于基因芯片的巨大潜力和诱人的前景,基因芯片已成为各国学术界和工业界研究和开发的热点。尤其在美国,正处于人类基因组计划以来的第二次浪潮之中,美国总统克林顿在1998年1月的国情咨文中指出:“在未来的12年内,基因芯片将为我们一生的疾病预防指点迷津”。1998年6月29日美国宣布正式启动基因芯片计划,联合私人投资机构投入了20亿美元以上的研究经费。世界各国也开始加大投入,以基因芯片为核心的相关产业正在全球崛起,美国已有8家生物芯片公司股票上市,平均每年股票上涨75%,专家今统计:全球生物芯片工业产值为10亿美元左右,预计今后5年之内,生物芯片的市场销售可达到200亿美元以上。美国财富杂志载文:在20世纪科技史上有两件事影响深远,一是微电子芯片,它是计算机和许多家电的心脏,它改变了我们的经济和文化生活,并已进入每一个家庭;另一件事就是生物芯片它将改变生命科学的研究方式,革新医学诊断和治疗,极大地提高人口素质和健康水平。鉴于生物芯片技术具有巨大理论意义和实际价值,基因芯片研究在国内也有了很快的发展,例如,复旦大学、中科院上海冶金所、清华大学、联合基因有限公司、军事医学科学院、中科院上海细胞所等单位已在生物芯片技术方面取得了较大突破,相信不久将有我国生产的生物芯片产品投放市场。