元素百科为您介绍中科院大连化物所二氧化碳加氢制低碳烯烃取得新进展。中科院大连化物所李灿院士、李泽龙博士等人在CO2催化加氢制备低碳烯烃方面取得新进展:实现了串联式催化剂体系上直接将CO2高选择性的转化为低碳烯烃。近日,该研究成果在ACS Catalysis (ACS Catal. 美国化学会期刊上发表。
李灿团队长期致力于太阳能光催化、光电催化、电催化分解水制氢和CO2转化工作。利用清洁能源制H2和CO2加氢直接转化为低碳烯烃,是将温室气体CO2资源化利用的一条重要途径。低碳烯烃(乙烯、丙烯、丁烯)是有机材料合成的最重要和最基本的化工原料。传统的合成方法主要是石脑油的裂解和煤经甲醇制备,均需要依赖化石资源(石油和煤)。因此,利用CO2转化为具有高附加值的低碳烯烃,既可以实现CO2碳资源化利用,又可以起到减排CO2作用,具有重要的战略意义。然而,CO2在热力学上是比较惰性的分子,实现CO2的活化和高选择性的转化存在较大的困难和挑战。
研究人员构建了ZnZrO固溶体氧化物/Zn改性SAPO分子筛串联催化剂(tandem catalysts)。该催化剂(ZnZrO/SAPO)在接近工业生产的反应条件下,烃类中低碳烯烃的选择性达到80-90%,并且具有较好的稳定性和抗硫中毒性能。实现CO2高效转化为低碳烯烃的关键是串联催化剂体系的构建。团队发现在ZnZrO固溶体氧化物上CO2加氢可高选择性的合成甲醇,在此基础上将ZnZrO固溶体氧化物与SAPO催化剂串联实现CO2直接加氢制备低碳烯烃。红外光谱和同位素实验表明CO2和H2在ZnZrO固溶体氧化物上被活化生成CHxO中间物种,中间物种从ZnZrO表面迁移到分子筛孔道中,进而完成碳碳键的生成。串联催化剂之间的协同机制以及关键中间物种CHxO的表面迁移实现了CO2加氢直接到低碳烯烃反应在热力学和动力学上的耦合。该技术的实现为CO2转化拓展了新的思路,同时也为低碳烯烃的合成开辟了新的路径。