化学词典告诉你光催化的原理及应用。光催化技术是一种新型纳米环境净化技术,在有光照的条件下,光触媒可持续不断地净化室内外空气,消毒杀菌,用于建筑物外墙又可产生自清洁效果。
光催化原理
半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。
光催化的应用
利用光催化净化技术去除空气中的有机污染物具有以下特点:
1直接用空气中的氧气做氧化剂,反应条件温和(常温 常压)
2可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。
3半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。
光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。
常见的光催化剂多为金属氧化物和硫化物,如Tio2, ZnO,CdS,WO3等,其中Tio2的综合性能最好,应用最广。自1972年Fujishima和Honda发现在受辐照的Tio2上可以持续发生水的氧化还原反应,并产生H2以来,人们对这一催化反应过程进行了大量研究。结果表明,Tio2具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是目前公认的最佳光催化剂。该项技术不仅在废水净化处理方面具有巨大潜力,在空气净化方面同样具有广阔的应用前景。