氢气在常温常压下,是一种极易燃烧,无色透明、无臭无味的气体。它作为可以一种清洁高效的燃料使用。氢燃烧的产物是水,不会对环境造成任何污染。随着我国环保问题的日益显现,利用自然可再生水资源制氢是未来重要的方法。
电解水制氢的优势
目前,氢气制备方法主要有:热化学法制氢如煤制氢和天然气重整制氢等、工业副产氢提纯制氢、水电解制氢、太阳能光催化分解水制氢。其中,水电解制氢技术有着无可比拟的优越性:第一,不使用化石燃料,不产生有害气体;第二,产品气纯度高,通常在99.7%以上;第三,技术成熟,流程及设备简单;第四,自动化水平高,采用微机控制,操作稳定可靠。
电解水制氢原理
在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。
在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。
氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明:
(1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:
KOH⇔K++ OH -
于是,水溶液中就产生了大量的K+和OH-。
(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下:
K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au
在上面的排列中,前面的金属比后面的活泼。
(3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位H= -1.71V,而K+的电极电位H = -2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。
(4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。