化工资讯
当前位置:元素商城  >  化工资讯网  >   化工热点资讯   >  中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制
中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制
2018-03-06 09:28:59来源:元素商城

元素百科为您介绍中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制。近日,中科院苏州纳米所研究员陈韦课题组与中科院化学所李玉良院士以及香港理工大学陶肖明教授等团队合作,设计制备了一种基于石墨炔新材料的电化学驱动器,并从石墨炔材料微观分子驱动机制的发现,到宏观驱动器件的高能量转换效率驱动特性,开展了全面系统的研究。相关成果已发表在《自然—通讯》杂志上。

 中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制.jpeg

仿生人工肌肉材料是20世纪90年代迅速发展起来的一类新型智能材料,正不断地掀起全球科学家的研究热潮,在航空航天、仿生机器人以及生物医疗等工程领域具有重要的应用价值。

其中,离子聚合物—金属复合材料(IPMC),也称为电化学驱动器,是一种典型的仿生人工肌肉材料。它是由两层电极与离子聚合物组装而成的三明治结构,在电场作用下,依靠离子在电极界面的可逆脱嵌过程,实现电能与机械能的转换。因其低电压驱动、柔性大变形等特性,在软体机器人、智能穿戴以及医疗器械等方面的应用前景广阔。

目前学术界公认的IPMC材料驱动机制是电容致动机理,在驱动电压刺激下,一定数量的离子在电极层中的预膨胀、嵌入、嵌出,引起电极材料的可逆膨胀与收缩效应,这种效应导致了驱动器的宏观应变。换言之,电极材料储能越大,驱动效应越强。

基于此机制,各种高储能的纳米材料都被尝试用作IPMC电极,驱动性能相比于传统IPMC材料得到大幅提升,但是较实际应用仍然存在较大的差距,曾经一度成为人们难以理解的困惑。究其原因,储能与驱动性能之间并不总是正相关的,它们之间存在一个能量转换效率的问题。

经过大量的调研与探索,科研团队发现,电极的能量转换效率主要由材料的电学特性、孔道构型、分子结构以及力学特性等复杂因素决定。因此,想要在驱动性能和应用上取得突破,就必须发展新型纳米结构活性材料,探索新的储能—转换机制。

科研团队提出并实验验证了一种新型分子驱动机制——石墨炔烯炔互变效应,该机制完全不同于传统的电容驱动机制,它是基于可逆配位转换效应引起的材料结构变化。“由于常规检测手段(如拉曼、红外等)难以捕捉这一分子尺度的配位转换效应,于是,我们创造性地利用高灵敏的原位和频共振光谱技术,从实验上验证了这一分子驱动机制。”

陈韦解释道,正是由于这种活性功能单元的作用,石墨炔IPMC柔性电极不仅表现出优异的电化学储能特性,同时,也表现出电—机械能量转换能力。石墨炔驱动器比电容高,倍率特性良好,换能效率远高于同类电化学换能器件,能量密度与哺乳动物生物肌肉能量密度相当,将电化学驱动器的性能提升到了一个新的水平。

您可能感兴趣的中国化工网栏目: 化学试剂化学元素化学元素周期表CAS查询
元素商城微信公众号
「一个有逼格的公众号」
相关标签: 材料及新材料材料化工  
相关专题: 材料
相关阅读:
●  凡士林是什么?凡士林的作用有哪些?
元素百科资讯频道:本文是介绍凡士林的文章。凡士林是什么?凡士林的组成结构,凡士林的作用,哪些人不适宜用凡士林。 1、凡士林是什么? 一种油脂状的石油产品。白色至黄棕色。有矿物油气味,而没有煤油气味。 凡士林的最早是由发明家罗伯特·切森堡(Robert Chesebrough)在1859年,在石油中提炼出来的副产品,其原名为“petroleum jelly&......
●  工信部发布:8项胶粘剂相关标准年内实施
元素百科为您介绍:胶粘剂是近代发展最快,应用行业极广的一种产品,它并对高新科学技术进步和人民日常生活改善有重大影响。近日,工信部批准发布了胶粘剂和胶粘带行业相关的8项标准,并将于2016年实施,其中汽车行业标准1项、化工行业标准7项。 胶粘剂标准 7项化工行业标准包括:HG/T 3697-2016纺织品用热熔胶粘剂,取代原标准HG/T 3697-2002;HG......
●  风机叶片时隔六年再现供不应求
风机叶片行业在经过近几年的产能过剩后,再次出现短缺现象,自从2008年风电项目大跨步前进后,供不应求的现象在六年后再次出现。 风机叶片是如何供不应求的? 据调研,从6月份开始,国内风机叶片行业开始出现“短缺”状况,很多风电整机制造商需要到叶片厂门前“排队”,才能拿到叶片,尤其是大型叶片。据悉,随着风电场装机向低风速地区转移,2MW风电机组......

您确定要从购物车中移除吗???