化工资讯
当前位置:元素商城  >  化工资讯网  >   化工热点资讯   >  中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制
中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制
2018-03-06 09:28:59来源:元素商城

元素百科为您介绍中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制。近日,中科院苏州纳米所研究员陈韦课题组与中科院化学所李玉良院士以及香港理工大学陶肖明教授等团队合作,设计制备了一种基于石墨炔新材料的电化学驱动器,并从石墨炔材料微观分子驱动机制的发现,到宏观驱动器件的高能量转换效率驱动特性,开展了全面系统的研究。相关成果已发表在《自然—通讯》杂志上。

 中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制.jpeg

仿生人工肌肉材料是20世纪90年代迅速发展起来的一类新型智能材料,正不断地掀起全球科学家的研究热潮,在航空航天、仿生机器人以及生物医疗等工程领域具有重要的应用价值。

其中,离子聚合物—金属复合材料(IPMC),也称为电化学驱动器,是一种典型的仿生人工肌肉材料。它是由两层电极与离子聚合物组装而成的三明治结构,在电场作用下,依靠离子在电极界面的可逆脱嵌过程,实现电能与机械能的转换。因其低电压驱动、柔性大变形等特性,在软体机器人、智能穿戴以及医疗器械等方面的应用前景广阔。

目前学术界公认的IPMC材料驱动机制是电容致动机理,在驱动电压刺激下,一定数量的离子在电极层中的预膨胀、嵌入、嵌出,引起电极材料的可逆膨胀与收缩效应,这种效应导致了驱动器的宏观应变。换言之,电极材料储能越大,驱动效应越强。

基于此机制,各种高储能的纳米材料都被尝试用作IPMC电极,驱动性能相比于传统IPMC材料得到大幅提升,但是较实际应用仍然存在较大的差距,曾经一度成为人们难以理解的困惑。究其原因,储能与驱动性能之间并不总是正相关的,它们之间存在一个能量转换效率的问题。

经过大量的调研与探索,科研团队发现,电极的能量转换效率主要由材料的电学特性、孔道构型、分子结构以及力学特性等复杂因素决定。因此,想要在驱动性能和应用上取得突破,就必须发展新型纳米结构活性材料,探索新的储能—转换机制。

科研团队提出并实验验证了一种新型分子驱动机制——石墨炔烯炔互变效应,该机制完全不同于传统的电容驱动机制,它是基于可逆配位转换效应引起的材料结构变化。“由于常规检测手段(如拉曼、红外等)难以捕捉这一分子尺度的配位转换效应,于是,我们创造性地利用高灵敏的原位和频共振光谱技术,从实验上验证了这一分子驱动机制。”

陈韦解释道,正是由于这种活性功能单元的作用,石墨炔IPMC柔性电极不仅表现出优异的电化学储能特性,同时,也表现出电—机械能量转换能力。石墨炔驱动器比电容高,倍率特性良好,换能效率远高于同类电化学换能器件,能量密度与哺乳动物生物肌肉能量密度相当,将电化学驱动器的性能提升到了一个新的水平。

您可能感兴趣的中国化工网栏目: 化学试剂化学元素化学元素周期表CAS查询
元素商城微信公众号
「一个有逼格的公众号」
相关标签: 材料及新材料材料化工  
相关专题: 材料
相关阅读:
●  快速变色聚合物被复旦大学开发出来
最近来自复旦大学的科研小组研制出可以随着温度变化并可以在1秒内改变颜色之后能恢复原色的一种新型的聚合物。这种新型聚合物相对于原来的一些聚合物具有更大的适用温度范围,在高温下甚至也可以进行快速变色。 《化学世界》近日刊登的一篇文章称,这种聚合物可用于生物传感器和智能窗户等领域,用于调节光照或热交换。 上海复旦大学的首席研究员邵正中表示,这种新型聚合物是一种可加工成各种形状的纳米纤维,可通......
●  石墨烯将为我国防腐涂料产业带来新增长点
元素百科为您介绍石墨烯将为我国防腐涂料产业带来新增长点。2018防腐蚀涂料年会近日在江苏扬州举行,江苏省产业技术研究院石墨烯材料研究所所长、南京工业大学化工学院副院长、江南石墨烯研究院执行院长暴宁钟教授等专家受邀出席大会并在石墨烯专题论坛上作主旨发言。暴宁钟等认为,石墨烯将为我国防腐涂料产业带来新增长点。 我国腐蚀总成本约占GDP的3%~5%,腐蚀问题已经成为影响社会和国民经济可持续发展......
●  材料化学专业详解:专业怎么样,前景如何及毕业去向
化学词典告诉你关于材料化学专业的一些疑惑问题,比如材料化学学些什么,适合什么人学,毕业后进哪些单位比较好等等。材料化学专业一般是作为材料科学与工程系学院中的一个专业方向。主要的研究范畴并不是材料的化学性质,而是材料在制备、使用过程中涉及到的化学过程、材料性质的测量。 材料化学学些什么?适合什么样的人学?有没有什么特殊要求?本科化学学的很基础,跟化学差不多,但很肤浅,涵盖的内容较多但都不深......

您确定要从购物车中移除吗???