化工资讯
当前位置:元素商城  >  化工资讯网  >   化工热点资讯   >  中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制
中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制
2018-03-06 09:28:59来源:元素商城

元素百科为您介绍中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制。近日,中科院苏州纳米所研究员陈韦课题组与中科院化学所李玉良院士以及香港理工大学陶肖明教授等团队合作,设计制备了一种基于石墨炔新材料的电化学驱动器,并从石墨炔材料微观分子驱动机制的发现,到宏观驱动器件的高能量转换效率驱动特性,开展了全面系统的研究。相关成果已发表在《自然—通讯》杂志上。

 中科院苏州纳米所科研人员探索纳米材料新的储能—转换机制.jpeg

仿生人工肌肉材料是20世纪90年代迅速发展起来的一类新型智能材料,正不断地掀起全球科学家的研究热潮,在航空航天、仿生机器人以及生物医疗等工程领域具有重要的应用价值。

其中,离子聚合物—金属复合材料(IPMC),也称为电化学驱动器,是一种典型的仿生人工肌肉材料。它是由两层电极与离子聚合物组装而成的三明治结构,在电场作用下,依靠离子在电极界面的可逆脱嵌过程,实现电能与机械能的转换。因其低电压驱动、柔性大变形等特性,在软体机器人、智能穿戴以及医疗器械等方面的应用前景广阔。

目前学术界公认的IPMC材料驱动机制是电容致动机理,在驱动电压刺激下,一定数量的离子在电极层中的预膨胀、嵌入、嵌出,引起电极材料的可逆膨胀与收缩效应,这种效应导致了驱动器的宏观应变。换言之,电极材料储能越大,驱动效应越强。

基于此机制,各种高储能的纳米材料都被尝试用作IPMC电极,驱动性能相比于传统IPMC材料得到大幅提升,但是较实际应用仍然存在较大的差距,曾经一度成为人们难以理解的困惑。究其原因,储能与驱动性能之间并不总是正相关的,它们之间存在一个能量转换效率的问题。

经过大量的调研与探索,科研团队发现,电极的能量转换效率主要由材料的电学特性、孔道构型、分子结构以及力学特性等复杂因素决定。因此,想要在驱动性能和应用上取得突破,就必须发展新型纳米结构活性材料,探索新的储能—转换机制。

科研团队提出并实验验证了一种新型分子驱动机制——石墨炔烯炔互变效应,该机制完全不同于传统的电容驱动机制,它是基于可逆配位转换效应引起的材料结构变化。“由于常规检测手段(如拉曼、红外等)难以捕捉这一分子尺度的配位转换效应,于是,我们创造性地利用高灵敏的原位和频共振光谱技术,从实验上验证了这一分子驱动机制。”

陈韦解释道,正是由于这种活性功能单元的作用,石墨炔IPMC柔性电极不仅表现出优异的电化学储能特性,同时,也表现出电—机械能量转换能力。石墨炔驱动器比电容高,倍率特性良好,换能效率远高于同类电化学换能器件,能量密度与哺乳动物生物肌肉能量密度相当,将电化学驱动器的性能提升到了一个新的水平。

您可能感兴趣的中国化工网栏目: 化学试剂化学元素化学元素周期表CAS查询
元素商城微信公众号
「一个有逼格的公众号」
相关标签: 材料及新材料材料化工  
相关专题: 材料
相关阅读:
●  新的机械肌肉举50倍自身重量物体
据一家英国媒体报道,如果人类卷入对抗机器人(类似于电影《终结者》)的战争,人类就需要强化自己的身体。目前,科学家最新研制了一种机械构造的肌肉,强壮度是人体的一千倍,能轻易举起自身50倍重量的物体。 这一创新技术的核心是一种叫做二氧化钒的材料,受热时该材料能够改变体积、外形和结构。美国劳伦斯-伯克利国家实验室研究小组使用二氧化钒建造一个扭力发动机,其工作方式类似于人类肌肉,但是它的速度更快,......
●  电池应用新技术:细菌可作锂电池负极材料
最近来自日本的一个科学研究小组向世界展示了他们的研究成果,这就是一种氧化铁纳米颗粒,这种颗粒是地下水中的细菌产生的,并且作用很大,据科研小组成员解释,这种颗粒可以作为锂离子电池的负极材料。据悉,这个科研小组的参加人员来自京都大学、东京工业大学和日本国立冈山大学。 细菌可作锂电池负极材料! 这些纳米颗粒通过细菌聚成纳米管,相关科研论文发表在美国化学学会的《应用材料与界面》上。 J. ......
●  中韩矛盾升级 国产PX迅速崛起
元素百科为您介绍中韩矛盾升级,国产PX迅速崛起。在韩国乐天集团同意“换地”给韩国国防部部署“萨德”后,国内民意对韩国之举表示愤慨。从抵制“乐天”到“限韩令”的消息炒得沸沸扬扬,国内反“萨德”情绪不断升级。经过萨德事件的逐步发酵,“限韩令”扩散至各个行业。 韩国自2013年起就已经替代日本成为中国最大的进口商品来源地,2016年韩国-中国逆差654亿美元远超巴西及日本等国家,中国从韩国进口......

您确定要从购物车中移除吗???